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Abstract

Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been
estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining
subjective `priora uncertainty estimates developed by standard Monte Carlo techniques with information about the
agreement between model outputs and observations. The resulting `posteriora uncertainty estimates re#ect both the
model's performance and subjective judgments about uncertainties in model parameters and inputs. To demonstrate
the approach, BMC analysis was applied to a model of ozone concentrations along two-day trajectories ending on 28
August 1987 at Azusa and Riverside, CA. Re"ned estimates of uncertainties in base case O

3
concentrations were

calculated, along with estimates of uncertainties in the response to 25% reductions in motor vehicle emissions of nitrogen
oxides and volatile organic compounds. For the cases studied, the model results were in reasonable agreement with
spatially interpolated observations. Bayesian updating reduced the estimated uncertainty in predicted peak O

3
concen-

trations from 35 to 20% at Azusa and from 24 to 18% at Riverside. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Photochemical air quality models are used to assess
the e!ects of proposed control strategies for urban ozone.
The models combine mathematical descriptions of atmo-
spheric physics and chemistry, accounting for emissions,
transport, reactions, and deposition. Uncertainties in the
input data, assumptions, and other aspects of the models
need to be quanti"ed in order to help identify robust
control strategies. Previous studies have estimated uncer-
tainties in photochemical air quality model results by
using Monte Carlo analysis or other techniques to
propagate estimates of uncertainties in model parameters
and inputs (Bergin et al., 1999; Pun, 1998; Hanna et al.,
1998; Gao et al., 1996; Yang et al., 1995). However, the
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resulting uncertainty estimates do not directly account
for the performance of the models as evaluated against
observations (McRae and Seinfeld, 1983; Tesche, 1988).
In standard Monte Carlo studies, model results that
match the observations and those in poor agreement
with them are treated as equally probable. In contrast,
Bayesian Monte Carlo (BMC) analysis provides a means
of adjusting uncertainty estimates to re#ect model perfor-
mance.

In standard Monte Carlo analysis, statistical tech-
niques or subjective judgments are used to assign prob-
ability distribution functions to model parameters and
inputs. Hundreds of model simulations are then run,
using randomly sampled values of each uncertain para-
meter. A common modi"cation of standard Monte Carlo
analysis is to use strati"ed sampling schemes such as
Latin hypercube sampling (LHS: Iman and Shortenca-
rier, 1984), rather than random sampling, for com-
putational e$ciency. With Monte Carlo analysis, some
combinations of input and parameter values can lead to
`suspecta model results, in the sense that they di!er
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signi"cantly from observations. This problem has been
addressed in water quality modeling studies by discard-
ing simulations that fall outside a speci"ed limit for
agreement with the observations (e.g., Hornberger and
Spear, 1980; Beck, 1987). Dilks et al. (1992) proposed
Bayesian Monte Carlo analysis for use in water quality
modeling as an improvement over such binary schemes
for acceptance or rejection.

Bayesian Monte Carlo analysis re"nes uncertainty es-
timates by using a continuous likelihood function to
weight the results of individual Monte Carlo simulations.
The likelihood function quanti"es the probability of ob-
taining a speci"ed di!erence between model results and
observations, accounting for the errors in the observa-
tions. Through the likelihood function, the highest prob-
ability is assigned to those Monte Carlo runs that most
closely match the observations, with relatively little
weight given to runs that produce a poor "t. BMC can be
used to re"ne estimates for model parameters, identifying
and accounting for covariances between them. BMC also
provides a means of accounting for model performance as
well as input uncertainties in developing estimates of un-
certainty in model predictions, e.g., for control scenarios.

BMC has been applied to estimate uncertainties in
potential sea level rise due to climate change (Patwar-
dhan and Small, 1992), environmental health risk assess-
ment (Brand and Small, 1995), groundwater modeling
(Sohn et al., 1999) and to evaluate the expected value of
sample information with respect to surface water sedi-
ment contamination (Dakins et al., 1996). Romanowicz et
al. (1998) applied BMC to a Gaussian plume air quality
model used to simulate SF

6
tracer experiments, with

roughness length, wind speed at 10 m and the wind speed
pro"le treated as uncertain input parameters. In addi-
tion, Pun (1998) has discussed the use of "eld observa-
tions to help assess uncertainties in photochemical air
quality models.

This study incorporates interpolated measurements of
O

3
concentrations with results from a previous Monte

Carlo uncertainty analysis (Bergin et al., 1999). In the
previous study, the vertically resolved trajectory version
of the California/Carnegie Institute of Technology (CIT)
air quality model (Russell et al., 1983; Pandis et al., 1992)
was used with Monte Carlo analysis to quantify uncer-
tainties in model results, accounting for uncertainties in
51 inputs or parameters. Using these Monte Carlo results
as `priora uncertainty estimates, the current study de-
rives `posteriora uncertainty estimates for both model
inputs and outputs by applying Bayes'Theorem to incor-
porate information on model performance.

2. Methods

The BMC approach is used here to determine the
posterior probabilities of individual simulations in a

Monte Carlo analysis. From Bayes' theorem, the poste-
rior probability of model output >

k
from simulation k is

de"ned as (Brand and Small, 1995)
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The posterior probabilities, p@, developed from the base
case model outputs can also be applied to update esti-
mates of sampled input parameter values or of model
predictions such as control scenario results. This is done
by substituting the values of the parameters, inputs or
predictions in each run for values of > in Eqs. (2) and (3).
Finally, the posterior correlation between output > and
input parameter X
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Eq. (4) can also be used to calculate posterior correla-
tions between pairs of input parameters.

Eq. (1) requires both a set of Monte Carlo simulations
and a corresponding set of observations. Also, an esti-
mate must be made of what the best possible agreement
could be between the model results and observations,
which is quanti"ed by the likelihood function. The for-
mulations of the likelihood functions used in this analysis
are discussed below, following presentation of the air
quality model and Monte Carlo calculations used to
evaluate the prior uncertainties.

The prior distributions used here are from a Monte
Carlo modeling study by Bergin et al. (1999). They ap-
plied Monte Carlo analysis with LHS to evaluate the
e!ects of uncertainties in 51 model parameters on output
concentrations of ozone and other secondary com-
pounds. E!ects of uncertainties on model predictions of
the response of peak O

3
to 25% reductions in motor

vehicle emissions of nonmethane organic compounds
(NMOC) and nitrogen oxides (NO

x
) were also evaluated.

Here, Bayesian updates are made for two of the sets of
trajectories modeled by Bergin et al., which end at River-
side and Azusa (see Fig. 1) at the times at which peak
O

3
concentrations were measured on 28 August 1987.
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Fig. 1. Air quality monitoring sites and contours of interpolated ozone concentrations at 1:30 p.m. on 28 August 1987. The paths of the
nominal air parcel trajectories arriving at Azusa at 1:30 p.m. and Riverside at 2:30 p.m. are superimposed on the "gure.

For each simulation, the trajectory version of the CIT
model simulates a parcel of air traveling across an air-
shed by solving the Lagrangian formulation of the atmo-
spheric di!usion equation

LC
i

Lt
"

L
Lz AKzz

LC
i

Lz B#R
i
(C
M
), i"1,2, n, (5)

where C
i
is the ensemble mean concentration of species

i, K
zz

is the turbulent eddy di!usivity in the vertical
direction, z, and R

i
(C
M
) is the net rate of generation of

species i by chemical reactions. The initial condition is
C

i
(z, 0)"C0

i
(z), and the boundary conditions are

vi
g
C

i
!K

zz

LC
i

Lz
"E

i
, at the surface,

and

K
zz

LC
i

Lz
"0 at the top of the column.

Here, vi
g

is the surface deposition velocity and E
i
is the

surface emissions #ux of species i. The trajectory column

modeled in this study is comprised of "ve vertical layers.
The most signi"cant limitations of the trajectory formu-
lation are its inability to account for horizontal di!usion
and wind shear. Nevertheless, the trajectory version of
the CIT model was used because it accounts for more
physical detail than a box model, while remaining com-
putationally tractable in the context of the hundreds of
model runs required for Monte Carlo analysis.

The trajectory model incorporates the Statewide Air
Pollution Research Center 1993 (SAPRC93) chemical
mechanism (Carter, 1995) and was applied to the 27}28
August 1987 episode of the South Coast air quality study
(SCAQS; Lawson, 1990). Emissions inputs for stationary
source and o!-road mobile sources were obtained from
the California Air Resources Board and the South Coast
Air Quality Management District. On-road motor ve-
hicle emissions were estimated using a fuel-based ap-
proach (Harley et al., 1997).

Bergin et al. (1999) considered uncertainty in wind
speed and direction, and in chemical rate constants,
deposition a$nities, mixing heights, the atmospheric
stability class, and emissions. Table 1 provides a list of
the inputs and parameters that were treated as random
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Table 1
Distributions of random variables included in Monte Carlo analysis (Bergin et al., 1999)!

Parameter label Description COV"

Air parcel trajectory Sum of CO emissions along each trajectory
CO}traj Azusa 0.122

Riverside 0.146
Pollutant emissions
MV}emis Motor vehicle emissions# (applied to CO, NO

x
, and NMOC) 0.246

MV}NO
x

Motor vehicle NO
x

(applied to NO
x

only) 0.06
MV}NMOC Motor vehicle NMOC (applied to NMOC only) 0.06
Othr}NO

x
Other anthropogenic NO

x
0.149

Othr}NMOC Other anthropogenic NMOC 0.294
Biog}emis Biogenic hydrocarbons: a-pinene, isoprene, higher lumped alkenes

(OLE3)
0.385

Chemistry: reaction rate constants
NO#O

3
NO#O

3
PNO

2
#O

2
0.095

O(1D)#H
2
O O(1D).#H

2
OP2 OH. 0.183

O(1D)#M O(1D).#MPO(3P).#M 0.183
CO#OH CO#OH.P HO

2
.#CO

2
0.265

HO
2
#NO HO

2
.#NOPOH.#NO

2
0.183

RCO3#NO$ RCO3.#NOPNO 0.343
RCO3#NO

2
%,& RCO3.#NO

2
PNO

2
0.150

RO2R#NO' RO2R.#NOPNO
2
#HO

2
. 0.417

RCHO#hl RCHO#hlPCCHO#RO2R.#RO2.#CO#HO
2
. 0.343

PPN PPNPC2CO-O
2
.#NO

2
#RCO3 0.804

ALK2#OH [lumped alkanes]#OH.Pproducts 0.265
ARO2#OH [lumped aromatics]#OH.Pproducts 0.265
OLE2#OH [lumped alkenes]#OH.Pproducts 0.183
OLE2#O

3
[lumped alkenes]#O

3
Pproducts 0.417

NO
2
#hl NO

2
#hlPNO#O(3P). 0.183

O
3
#hl O

3
#hlPO(1D).#O

2
0.265

AFG2#hl) [aromatic fragmentation products]#hlPproducts 1.333
HCHO#hl* HCHO#hlP2 HO

2
.#CO 0.343

NO
2
#OH& NO

2
#OH.PHNO

3
0.265

ETHE#OH& ETHE#OH.PRO2R.#RO2.#1.56HCHO#0.22CCHO 0.114
PAN PANPCCO-O

2
.#NO

2
#RCO3. 0.385

Mixing heights
MH}xxxx Mixing height for period ending at time xxxx; 11 periods are

represented, from 0 to 2400 minutes.
See Bergin et al. (1999)

Deposition+

O
3}

a! O
3

deposition a$nity 0.29
NO}a! NO deposition a$nity 0.29
NO

2}
a! NO

2
deposition a$nity 0.29

Atmospheric stability
Pas}Gif, Pasquill}Gi!ord classi"cation 0.11

!Distributions are treated as independent and lognormal with a mean of 1.0 unless noted otherwise. See Bergin et al. (1999) for
references and further details.
"Coe$cient of variation (COV)"standard deviation normalized by nominal value at 298 K and 1 atmosphere.
#Uncertainty due to variability in remote sensing of CO emissions (see Bergin et al., 1999; Harley et al., 1997, for elaboration).
$Correlated (o"1) with rate constants for CCO-O

2
.#NOPCO

2
#NO

2
#HCHO#RO2R.#RO2.;

C2COO2.#NOPCO
2
#NO

2
#CCHO#RO2R.#RO2.; and for other peroxyacyl radical reactions with NO

2
.

%Correlated (o"1) with rate constants for CCO-O
2
.#NO

2
PPAN; C2COO2.#NO

2
PPPN; and rate constants for other

peroxyacyl radical reactions with NO
2
.

&Coe$cient of variation calculated from Troe parameter uncertainty estimates.
'Correlated (o"1) with rate constants for R2O2#NOPNO

2
; RO2#NOPNO; and for other peroxy radical reactions with NO.

)Correlated (o"1) with rate constant for AFG1# hmPHO
2
.#HCOCO-O

2
.#RCO3.

*Correlated (o"1) with rate constant for HCHO#hlPH
2
#CO.

+Deposition a$nity distributions are assumed to be uniform.
,The Pasquill}Gi!ord distributions are discrete, and are described in detail by Bergin et al. (1999).
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variables. Ensembles of trajectories were generated by
adding random deviations in the winds at each hour as
the trajectories are propagated backwards from the air
quality monitoring sites (Noblet et al., 1998). For pur-
poses of estimating uncertainty contributions, each tra-
jectory path in the ensemble is represented by the sum of
the CO emissions along the path, which in turn is highly
correlated with NO

x
and NMOC emissions. Bergin et al.

(1999) neglected uncertainties in the other rate para-
meters of the SAPRC93 mechanism, temperature, rela-
tive humidity, and the initial concentrations of O

3
,

NMOC, and NO
x
, because preliminary sensitivity calcu-

lations showed they had little e!ect on peak ozone con-
centrations. Two hundred simulations were performed
for each trajectory endpoint, each having a prior prob-
ability of 1

200
, and each incorporating a unique trajectory

path and set of input values sampled with LHS. Of note,
the uncertainties in model inputs (other than the traject-
ory path) were treated as multiplicative factors, allowing
the same 200 sets of sample values to be used for both
trajectory endpoints. Bergin et al. (1999) give a complete
description of the uncertain parameters and the basis for
their estimated probability distributions.

In typical air quality applications, observations of pol-
lutant concentrations are point measurements while
model results are averaged over a grid cell volume. How-
ever, pollutant concentrations have spatial inhomogenei-
ties within the volumes represented by model grid cells.
McNair et al. (1996) have argued that if the network of
measurements is reasonably dense, an air quality model
cannot be expected to produce a concentration "eld that
matches pollutant measurements at discrete points any
better than a "eld produced by directly interpolating the
measurements over the model grid. Adopting this argu-
ment, the model results in this study are compared to
interpolated observations, with the likelihood functions
re#ecting the interpolation errors.

For use in the Bayesian analysis, O
3

measurements
from 56 SCAQS monitoring stations were averaged for
each hour of the two-day simulation period and inter-
polated to obtain two-dimensional gridded "elds of
O

3
concentrations (Harley, 1998; Goodin et al., 1979).

Interpolated ozone concentrations along the nominal
trajectories used by Bergin et al. (1999) were read from
the "elds by projecting the trajectory positions onto the
successive, hourly wind"elds. The resulting arrays of
O

3
concentrations were used in the likelihood calcu-

lations.
McNair et al. (1996) used a data withholding technique

to compare observed and interpolated O
3

concentra-
tions for 37 of the SCAQS monitoring stations, for the
pollution episode and area used in this study. Interpo-
lated "elds were constructed with data withheld from
each monitoring site in turn, so the resulting interpola-
tion error could be calculated at each site. McNair et al.
reported a normalized root-mean-square (RMS) error of

&30% with a bias of !7% between interpolated
and observed ozone concentrations above 60 ppb, for
28 August 1987. The RMS error was used in the BMC
calculations as an estimate of the standard deviation of
the error associated with the interpolated concentrations.
The !7% bias is not considered in the BMC calcu-
lations, because we view it as a legitimate correction for
the mismatch between point measurements and spatially
averaged model results.

For this study, the data withholding results of McNair
et al. (1996) were also examined to determine whether the
interpolation errors were serially or spatially correlated.
Based on this analysis, trajectories ending at Riverside
and Azusa were selected to demonstrate the BMC ap-
proach. Interpolation errors were not signi"cantly corre-
lated across these two sites, making it easier to de"ne and
calculate appropriate likelihood functions. However,
over the time period from 6 a.m. to 2 p.m., and over the
set of 37 SCAQS monitoring sites, the average 1-h lag
autocorrelation coe$cient for the error was about 0.5.
This degree of autocorrelation was accounted for in cal-
culating a likelihood function that utilized the 5 h of
O

3
concentrations preceding the observed O

3
peak

along the Azusa and Riverside trajectories, as discussed
below.

Two sets of likelihood functions (and therefore poste-
rior probabilities) were calculated, one based on the "nal
interpolated O

3
concentrations at the two sites and the

other on the interpolated concentrations for the last "ve
hours along each trajectory. Results from the two sites
are combined because the best estimates of model para-
meters (e.g., rate constants) should be the same for both
locations. With the assumption that the errors in the
interpolated concentrations at Azusa and Riverside are
independent and normally distributed with mean of zero,
the `"nal-ha likelihood is calculated from
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3
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is the output concentration from the kth simulation

and pe is the standard deviation of the error in the
interpolated observations. Based on McNair et al.'s
study, pe is taken as 0.3 O. Combining the results and
data from the two sites, the likelihood for the kth simula-
tion is
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where Az denotes Azusa and Ri denotes Riverside.
Likelihoods were also calculated for 5 h time series

along each trajectory by viewing the series of errors in
interpolated ozone concentrations as a Markov sequence
(Benjamin and Cornell, 1970), in which each value is
assumed to be correlated only with the previous value
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(Chock, 1984). With this assumption, the bivariate nor-
mal probability distribution (Guttman et al., 1982) can be
used to derive a Markov-chain likelihood function as
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Here, O is a vector of sequential observations made at
equal time intervals, H is the total number of observa-
tions; pe,m is the standard deviation of the error in the
observations at the mth observation time; o is the auto-
correlation coe$cient, and w

m,k
"(O

m
!>

m,k
) for simu-

lation k and time step m. The mean value of w
m,k

, i.e., k
m
,

is assumed to be zero. The value of pe,m is taken as 0.3 O
m
.

For this study, a `5 ha likelihood function was de"ned
using Eq. (8) by selecting H"5, with observations at
hourly intervals, and setting o"0.5. Likelihood func-
tions calculated separately for the Azusa and Riverside
trajectories were combined according to Eq. (7).

A 5 h period at the end of each trajectory was selected
for the second likelihood function because it captures the
daytime rise to the peak O

3
concentration. In addition, it

avoids periods when observations drop below the 60 ppb
cuto! that McNair et al. (1996) used in calculating the
RMS interpolation error. Use of a multi-hour time series
is also in keeping with the proposed 8-h averaging time
for the National Ambient Air Quality Standard for O

3
.

Posterior estimates based on the 5-h likelihood function
incorporate more information from the observations and
thus should be preferred to those calculated using only
the "nal concentration. However, for comparison both
sets of posterior estimates are presented in the next sec-
tion.

3. Results

Fig. 1 shows the interpolated ozone isopleths for 1:30
p.m. on 28 August together with nominal trajectory
paths leading to Azusa and Riverside. Note, the traject-
ory paths actually represent steps in time as well as
location, while the isopleths are presented for a single 1 h
averaged period. The interpolated observations are
shown for 1:30 p.m. because the peak O

3
concentration

at Azusa was measured then. The peak O
3

concentration
at Riverside was observed at 2:30 p.m. The interpolated
values over the ocean are highly uncertain due to lack of
observations there, but in any case are not used in the
Bayesian analysis.

Time series of O
3

concentrations along trajectories
leading to Azusa and Riverside are shown in Fig. 2,

comparing interpolated measurements with prior Monte
Carlo modeling results from Bergin et al. (1999). The time
series are excerpts from the full two-day trajectories,
starting at 4 a.m. on the 28th and ending at the time of
the observed peak at each location. In each case the error
bars represent $1p. At both sites, the prior mean con-
centrations from the Monte Carlo simulations exceed
the interpolated, observed O

3
concentrations from the

time of sunrise until almost the "nal hour, at which time
the interpolated observations exceed the model results.
The uncertainty in the prior modeled O

3
concentrations

is also larger than the assumed 30% interpolation error
until almost the "nal hour. However, for the "nal
O

3
concentration at Riverside, the estimated error in the

interpolated observations is greater than the prior uncer-
tainty from the Monte Carlo results. At Azusa, the prior
uncertainty in the "nal modeled O

3
concentration is

similar to the interpolation error.
The comparison shown in Fig. 2 suggests that the two

likelihood functions developed for the Bayesian Monte
Carlo analysis should give somewhat di!erent results.
The likelihood function based only on the "nal O

3
con-

centrations is expected to give approximately equal
weight to the prior and the interpolated values because
their errors are approximately equal, and to produce
a posterior mean that is somewhat higher than the prior
mean. In contrast, because the observations have smaller
errors than the model results up until the "nal hour, the
likelihood function based on the 5-h time series is ex-
pected to give more weight to the observations, and
result in a posterior mean that is lower than the prior
estimate.

Final O
3

concentrations are presented in Table 2,
comparing the observed point measurements with the
interpolated values, and comparing prior Monte Carlo
results with posterior probabilities calculated from both
"nal and 5-h likelihood functions. Results of a simulation
using nominal values of all of the parameters and inputs
are also shown for each site. The interpolated O

3
concen-

trations are lower than observed concentrations at both
sites. Use of the "nal-h likelihood function increases the
mean estimates of the "nal O

3
concentrations at both

sites by about 50% of the di!erence between the prior
means and the interpolated values. The posterior mean
"nal concentrations estimated using the 5-h likelihood
function are lower than the prior means at both sites,
re#ecting the fact that the interpolated observations are
lower than the prior mean estimates over the four pre-
vious hours. With both likelihood functions the posterior
standard deviations in the "nal O

3
concentrations are

reduced from the prior standard deviations. For Azusa,
the posterior uncertainties in the "nal O

3
concentration

(100%]standard deviation/mean) are about 20%,
whereas the prior uncertainty was 35%. For Riverside,
the uncertainty is reduced from the prior estimate of 24%
to posterior estimates of about 18%.
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Fig. 2. Comparison of ozone concentrations from prior Monte Carlo modeling (Bergin et al., 1999) versus interpolated observations
along (a) the Azusa trajectory and (b) the Riverside trajectory. The mean value and mean $1p are shown for each case.
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Table 2
Comparison of peak observed, interpolated and modeled ozone concentrations (ppm) for Azusa at 1:30 p.m. and Riverside at 2:30 p.m.
on August 28, 1987

Site Observed Interpolated
observation

Nominal model
result

Prior Monte Carlo
mean$1p

Final-h posterior
mean$1p

5-h posterior
mean$1p

Azusa 0.240 0.214 0.167 0.185$0.065 0.199$0.042 0.168$0.033
Riverside 0.240 0.196 0.246 0.185$0.044 0.191$0.034 0.177$0.031

As discussed in the previous section, posterior prob-
abilities, p@

k
, for each Monte Carlo run can also be applied

to the sampled input and parameter values used in that
run, to update the estimates of these values. Table 3
shows the input variables whose estimated probability
distributions are modi"ed most by the Bayesian updates,
as measured by the di!erences between the prior and
posterior mean values. Posterior estimates based on the
"nal-h likelihood function and those based on the 5-h
likelihood function both show the largest change for the
parameter AFG2#hl, which is the photolysis rate of
the unknown fragmentation products of aromatics oxi-
dation. The mean value of this rate constant is increased
by about 10% when the "nal likelihood function is used;
and decreased by about 15% when the 5-h likelihood
function is used. The AFG2 photolysis rate has a strong
in#uence on the O

3
concentration (Yang et al., 1995), and

was also assigned a relatively large prior uncertainty
(Stockwell et al., 1994). The second largest change result-
ing from use of the "nal likelihood function is an increase
of about 5% in the rate constant for PPN decomposition.
Changes in the mean values of other parameters with the
"nal likelihood function are less than about 3%. With
the 5-h likelihood function, the estimated mean rate
constant for PAN decomposition is decreased by about
8%, and mean values for four other parameters are
reduced by 5}6%. Overall, however, adjustments to the
mean values and standard deviations of the input para-
meters from the Bayesian analysis are small.

Table 4 presents a comparison of prior and posterior
correlations between selected input parameters and the
"nal O

3
concentrations at Azusa and Riverside. The

prior correlations re#ect the sensitivity of the "nal
O

3
concentrations to independent variations in each

parameter. In contrast, the posterior correlations are
a!ected by correlations between parameters that are in-
duced by the di!erent posterior probabilities of each
sample. As shown in Table 4, both 5-h and "nal-h poste-
rior correlations are lower than the prior correlations of
"nal O

3
concentrations with motor vehicle emissions,

trajectory path emissions, the O
3

deposition a$nity and
the rate parameters for NO

2
#OH, RCO3#NO, and

PAN decomposition. Five-h posterior probabilities in-
crease the correlations between the "nal O

3
concentra-

tion at Azusa and the rate constants for both
O(1D)#H

2
O and O(1D)#M and between the "nal

O
3

concentration at Riverside and the AFG2#hl rate
parameter. The 5-h posterior probabilities reduce the
correlation between the NO

2
#hl rate parameter and

the "nal O
3

concentration at Riverside by nearly a factor
of two, but increase its correlation with the "nal
O

3
concentration at Azusa.

In addition to the correlation of input parameters with
"nal ozone concentrations, prior and posterior correla-
tion coe$cients were examined for pairs of input para-
meters. The prior correlation coe$cients for the input
parameters are generally less than 0.05 as desired for
independent variables generated with LHS. A positive
induced correlation indicates that observed concen-
trations are matched best when the parameters deviate
from their mean values in the same direction. In contrast,
a negative correlation indicates that observed concen-
trations are best matched if an increase in the value of the
"rst parameter is accompanied by a decrease in the
second one, or vice versa.

Among the input parameters listed in Table 4, the
largest degrees of correlation induced by the 5-h poste-
rior probabilities are: 0.26 and 0.24 for the rate parameter
of NO

2
#HO with the Riverside and Azusa trajectory

emissions, respectively; !0.23 for the NO
2

photolysis
rate and the Riverside trajectory emissions; !0.22 for
motor vehicle emissions and the Azusa trajectory emis-
sions; and 0.21 for the rate parameters of O(1D)#H

2
O

and NO
2

photolysis. The largest degrees of correlation
induced by the "nal-h posterior probabilities are: 0.16
and 0.12 for the NO

2
#HO rate parameter with the

Riverside and Azusa trajectory emissions, respectively;
!0.12 for Riverside trajectory emissions with the rate
parameter for PAN decomposition; and !0.12 for
motor vehicle emissions with the RCO3#NO rate
parameter.

The induced correlation between pairs of input para-
meters helps explain the changes in correlation between
the input parameters and the output O

3
concentrations.

For example, the in#uence of the motor vehicle emissions
input is reduced by its positive correlation with the
O(1D)#M rate constant (o"0.18) and its negative
correlation with Azusa trajectory path emissions
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Fig. 3. Prior and posterior cumulative probability distributions of percentage reductions in peak ozone due to 25% reductions in motor
vehicle emissions of NO

x
, NMOC or NO

x
and NMOC combined. (a) Reductions in O

3
at Azusa. (b) Reductions in O

3
at Riverside.

The mean estimates are shown in the legends in parentheses. In the legends, NO
x

prior refers to prior Monte Carlo results of the case
with a 25% reduction in motor vehicle NO

x
emissions. NO

x
"nal-h and NO

x
5-h are the posterior estimates obtained for that case with

the "nal-h and 5-h likelihood functions applied, respectively. The labels for the cases with 25% reductions in motor vehicle NMOC
emissions and combined reductions (Comb) are de"ned in the same way.
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Table 3
E!ect of Bayesian updating on estimates of model inputs and parameters. Results are shown for the six parameters exhibiting the largest
changes in the mean value when both the "nal- and 5-h posterior probabilities are applied to each input sample

Final-h posterior 5-h posterior

Variable Prior COV % Change
in l

% Change
in p

Variable Prior COV % Change
in l

% Change
in p

AFG2#hl 1.33 10.4 4.9 AFG2#hl 1.33 !15.4 5.8
PPN 0.80 4.8 4.0 PAN 0.39 !8.3 !12.5
RCO3#NO 0.34 3.0 7.4 RO2R#NO 0.42 !6.1 !9.0
MV}emis 0.25 2.3 !5.8 PPN 0.80 !5.4 !10.6
NO

2}
a! 0.29 2.3 1.1 MV}emis 0.25 !5.2 3.4

O
3}

a! 0.29 !2.0 !0.5 HCHO#hl 0.34 !5.0 !7.0

Table 4
Correlation of selected input parameters with modeled "nal ozone concentrations at Azusa and Riverside

Azusa Riverside

Prior 5-h posterior Final-h posterior Prior 5-h posterior Final-h posterior

MV}emis 0.45 0.22 0.30 0.43 0.28 0.29
NO

2
#OH !0.32 !0.23 !0.21 !0.18 !0.09 !0.13

CO}traj! 0.32 0.13 0.24 0.45 0.33 0.33
NO

2
#hl 0.29 0.38 0.27 0.31 0.12 0.24

RCO3#NO 0.24 0.12 0.19 0.31 0.16 0.24
PAN 0.21 0.20 0.11 0.15 0.15 0.04
AFG2#hl 0.20 0.25 0.17 0.07 0.14 0.02
O

3}
a! !0.19 !0.08 !0.06 !0.26 !0.04 !0.14

O(1D)#H
2
O 0.11 0.27 0.11 0.00 !0.03 !0.03

O(1D)#M !0.05 !0.16 !0.05 0.01 !0.04 0.00

!Sum of CO emissions along each trajectory for either Azusa or Riverside.

(o"!0.22) and the rate constant for RCO3#NO
(o"!0.18). The in#uence of the NO

2
photolysis rate at

Riverside is reduced by its negative correlation with
emissions along di!erent Riverside trajectories.

The posterior probabilities were also applied to Monte
Carlo simulation results in which NO

x
, NMOC, and

combined NO
x

and NMOC emissions from motor ve-
hicles were reduced by 25%. In e!ect, this weight each
prediction according to how well the corresponding base
case simulation matched the interpolated observations.
Fig. 3 shows prior and posterior cumulative distribution
functions of the percentage reduction in O

3
achieved

with each of these cases.
At Azusa, the prior and posterior model results are

consistent in indicating that reductions in NMOC emis-
sions would be more e!ective than reductions in NO

x
emissions, which have a substantial probability of in-
creasing "nal ozone concentrations. Posterior estimates
based on the "nal-h likelihood function make NO

x
emis-

sions reductions appear slightly more e!ective and
NMOC emissions reductions slightly less e!ective
than the prior estimates, but the shifts are not large.
The 5-h likelihood function has the opposite impact,
favoring NMOC reductions. The estimated e!ect of com-
bined reductions in NMOC and NO

x
emissions has

relatively little prior uncertainty, and the posterior distri-
butions for this case are almost identical to the prior
distributions.

At Riverside, the means of the prior and "nal-hr pos-
terior distributions suggest that reducing NMOC emis-
sions would be more e!ective than reducing NO

x
emissions, but the median (50th percentile) results sug-
gest the opposite. Both the means and the median esti-
mates from the 5-h posterior distributions show NMOC
reductions as being more e!ective than NO

x
reductions.

As at Azusa, there is little uncertainty and negligible
e!ect of Bayesian updating on the predicted response to
combined reductions in NMOC and NO

x
emissions.

790 M.S. Bergin, J.B. Milford / Atmospheric Environment 34 (2000) 781}792



4. Discussion

For the cases studied here, the prior Monte Carlo
results and interpolated observations were in reasonable
agreement. Consequently the Bayesian analysis reduces
Bergin et al.'s (1999) estimates of uncertainties in base
case O

3
concentrations at Azusa and Riverside from 35

and 24% to about 20 and 18%, respectively. Updates
using the 5-h likelihood function make NMOC emissions
reductions appear somewhat more e!ective, and NO

x
reductions somewhat less e!ective than indicated by the
prior Monte Carlo results. However, these "ndings are
speci"c to the model, simulation conditions, observations
and error estimates used in this study.

An important limitation of Bayesian Monte Carlo
analysis is the underlying assumption that all of the
signi"cant sources of uncertainty in the model are ac-
counted for in the prior Monte Carlo analysis. The tra-
jectory model used in this study neglects wind shear and
horizontal di!usion, which introduces errors associated
with model structure that have not been treated in the
Monte Carlo analysis. In addition, Bergin et al.'s study
only accounted for uncertainties in total emissions from
various sources, not uncertainties in their spatial and
temporal distribution. Due to these limitations, this
study should be viewed primarily as a demonstration of
the Bayesian Monte Carlo technique. In future studies,
BMC should be applied to a detailed three-dimensional
airshed model to minimize the uncertainty due to model
structure.

A second limitation of this study is that only O
3

data
were used in the Bayesian updating step. Incorporation
of NMOC and NO

x
measurements as well as observa-

tions of other photochemical products would be useful to
further re"ne Bayesian updates of input parameter values
and model predictions. However, care needs to be taken
in estimating likelihood functions for these additional
species. For example, the mismatch between interpolated
point measurements and grid-cell-averaged model results
is expected to be even more pronounced for NMOC or
NO

x
concentrations than for O

3
.

As shown here by the comparison of Bayesian updates
made with the "nal- versus 5-h likelihood functions, the
results of Bayesian Monte Carlo analysis can be sensitive
to the choice of observations incorporated in the analy-
sis. For example, the 5-h and "nal-h likelihood functions
nudge the mean estimate of the AFG2#hl rate para-
meter in opposite directions. In addition, the 5-h likeli-
hood function makes NMOC emissions reductions
appear relatively more e!ective whereas the "nal-h
likelihood tends to improve the predicted e!ectiveness of
NO

x
reductions. In this study, posterior estimates based

on the 5-h likelihood function are judged to be more
reliable than those based on the "nal likelihood function,
because they utilize more information from the observa-
tions. Use of the 5-h likelihood function is also in keeping

with recent interest in an 8-h O
3

standard. The Markov
chain likelihood function was limited to a 5-h time period
because earlier O

3
concentrations drop below the 60 ppb

cuto! for which McNair et al. (1996) performed the
interpolation error analysis. In future work, the error
analysis could be extended to lower concentrations to
allow longer time series to be used for Bayesian updating.
Additionally, if BMC were applied to a three-dimen-
sional model, observations could be incorporated from
more sites.

Ideally, con"dence levels placed on model predictions
should re#ect both prior information about input and
parameter uncertainties and information about model
performance. Provided that the likelihood function can
be adequately de"ned, BMC analysis appears to be a
useful technique for combining these two types of in-
formation. In future studies, BMC should be applied to
three-dimensional air quality models, because of their
widespread use in designing control strategies for urban
ozone.
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